The Antiretroviral Pregnancy Registry: 30 years of Monitoring for Congenital Anomalies

William R. Short, MD, MPH, FIDSA
Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA

Disclosure: Consultant: ViiV. Speaking Honorarium: ViiV, Janssen
The Antiretroviral Pregnancy Registry

- The Antiretroviral Pregnancy Registry (APR) is a voluntary, international, prospective exposure-registration cohort study
 - Started as Zidovudine in Pregnancy Registry in 1989; became APR in 1993
 - Currently 29 sponsoring ARV manufacturers
 - Overseen by an independent Advisory Committee
 - As of July 31, 2020, include >20,437 live births with antiretroviral (ARV) exposure

- Designed to assist clinicians and patients in weighing potential risks and benefits of HIV treatment used during pregnancy
 - Monitors prenatal exposures to ARV drugs to detect a potential increase in the risk of birth defects
 - 150 ARV drugs: 57 brand-name single-entity drugs or fixed-dose combinations; 94 generic versions

- APR Objectives:
 - Provide early warning signals of major teratogenicity
 - Estimate prevalence of major birth defects and compare to the general population
 - Supplement animal toxicology, clinical, and epidemiological study data
Antiretroviral Pregnancy Registry Analysis

1. Prospective
 - Reported during pregnancy before delivery, follow-up for outcome
 - Primary Analysis
 - Prevalence = \(\frac{\text{number of defects}^\wedge}{\text{number of live births}} \)
 - Compared to:
 - MACDP* 3/100 live births
 - TBDR* 4/100 live births
 - 1st trimester vs. 2nd & 3rd trimester

2. Retrospective
 - Secondary Review for Clusters and Patterns
 - Reported after birth, no denominator
 - Secondary Analyses

3. Clinical Studies
 - Timing, Dosage, Type of Antiretroviral Drug Use, Concomitant Exposures, and Pregnancy Outcome/Birth Defect at Time of Delivery

^ defects counted among all outcomes >20 wks gestation including stillbirth, induced abortion & live births
* MACDP = Metropolitan Atlanta Congenital Defects Program; TBDR = Texas Birth Defects Registry
Overall Birth Defect Rate

Confidence Intervals for Birth Defects – All Prospective Registry Cases with Follow-up Data Closed Through 31 July 2020

<table>
<thead>
<tr>
<th></th>
<th>Number of Live Births</th>
<th>Number of Live Births with at least one defect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20,437</td>
<td>580 (2.8%)</td>
</tr>
</tbody>
</table>

95% Confidence Intervals for % of Birth Defects for exposures in:

- **First Trimester**: 304/10,754 (2.8%) (95% CI: 2.5–3.2%)
- **Second/Third Trimester**: 274/9,680 (2.8%) (95% CI: 2.5–3.2%)
- **Any Trimester**: 580/20,437 (2.8%) (95% CI: 2.6–3.1%)

Relative Risk (first vs second/third trimester): 1.00 (95% CI: 0.85, 1.17)

Due to unknown trimester of exposure data for 2 case(s) with birth defects, specific counts may not sum to the overall total.
APR Drug-Specific Birth Defect Rates*

Prevalence of Birth Defects (95% CI): 1 January 1989 – 31 July 2020
First Trimester Exposure

*For drugs meeting threshold of ≥ 200 1st trimester exposed pregnancies
MACDP: Vertical solid line = upper 95% CI, 2.76%
TBDR: Vertical dashed line = upper 95% CI, 4.19%

2.8% (CI 2.5-3.2%)
Conclusions

- The APR has not found a significant difference in CA prevalence overall or by trimester of exposure compared to population based surveillance systems.

- A detailed review of cases for DDI, NFV, and TAF did not identify a pattern of CAs. The relevance of the statistical findings for DDI and NFV are unclear.

ADVISORY COMMITTEE CONSENSUS Statement (Precis)

- The Antiretroviral Pregnancy Registry finds no apparent increases in frequency of defects with first trimester exposures compared to exposures starting later in pregnancy and no pattern to suggest a common cause; however, potential limitations of registries should be recognized.

- Providers are strongly encouraged to report eligible patients to SM_APR@APRegistry.com or visit www.APRegistry.com
The Antiretroviral Pregnancy Registry: 30 years of Monitoring for Congenital Anomalies

Jessica D. Albano PhD, MPH ¹, William R. Short, MD, MPH ², Angela E. Scheuerle MD ³, Karen Beckerman MD ⁴, Lynne Mofenson MD ⁵, Vani Vannappagari PhD ⁶.

¹Syneos Health, Wilmington, NC, USA
²The Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, USA
³University of Texas Southwestern Medical Center, Dallas, TX, USA
⁴Carl Icahn School of Medicine at Mt Sinai, Bronx, NY, USA
⁵Elizabeth Glaser Pediatric AIDS Foundation, Silver Spring, MD, USA
⁶Epidemiology and Real World Evidence, ViiV Healthcare, Research Triangle Park, NC, USA