DREAMM-2 Pivotal Study Primary Analysis: Single-Agent Belantamab Mafodotin (GSK2857916) in Relapsed/Refractory Multiple Myeloma (RRMM) Refractory to Proteasome Inhibitors (PIs), Immunomodulatory Agents, and Refractory and/or Intolerant to Anti-CD38 Monoclonal Antibodies (mAbs)

¹Emory University, Winship Cancer Institute, Atlanta, GA, USA; ²MD Anderson Cancer Center, Houston, TX, USA; ³University of Maryland at Baltimore, Baltimore, MD, USA; ⁴Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁵Icahn School of Medicine at Mount Sinai, New York, NY, USA; ⁶University of Kansas Cancer Center, Fairway, KS, USA; ⁷University of Wisconsin, Carbone Cancer Center, Madison, WI, USA; ⁸Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; ⁹Indiana University Simon Cancer Center and Roudebush VAMC, Indianapolis, IN, USA; ¹⁰University Medical Center of Hamburg-Eppendorf, Hamburg and University Hospital of Tuebingen, Tuebingen, Germany; ¹¹Haematology Department, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre-Benite, France; ¹²University of Washington, Seattle, WA, USA; ¹³Immunohématologie, Hôpital Saint-Louis, APHP, Paris, France; ¹⁴CHRUS de Lille, Hôpital Claude Huriez, Lille, France; ¹⁵CHU de Bordeaux, Hôpital Haut Lévêque, Pessac, France; ¹⁶Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany; ¹⁷Clínica Universidad de Navarra-Pamplona, Navarra, Spain; ¹⁸Levine Cancer Institute, Atrium Health, Charlotte, NC, USA; ¹⁹Medical College of Wisconsin, Milwaukee, WI, USA; ²⁰Moffitt Cancer Center, Tampa, FL, USA; ²¹University of Melbourne, St Vincent’s Hospital Melbourne, Melbourne, VIC, Australia; ²²CHU de Nantes-Hôtel Dieu Service Hématologie Clinique, Nantes, France; ²³GlaxoSmithKline, Philadelphia, PA, USA; ²⁴GlaxoSmithKline, Research Triangle Park, NC, USA; ²⁵University College London Hospitals, NHS Foundation Trust, London, UK; ²⁶NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK; ²⁷Dana-Farber Cancer Institute, Boston, MA, USA; ²⁸Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
Disclosures

Presenting author: Philippe Moreau has received personal fees from GlaxoSmithKline, Celgene, Amgen, and Takeda.

Coauthors: Sagar Lonial has received grant funding and personal fees from Celgene and Takeda, and personal fees from Novartis, Bristol-Myers Squibb, GlaxoSmithKline, Amgen, Merck, and Janssen. Hans C. Lee has received grant funding and personal fees from Amgen, Celgene, Janssen, and Takeda; personal fees from GlaxoSmithKline and Sanofi, and grant funding from Daiichi Sankyo. Suzanne Trudel has received grant funding and personal fees from Amgen, Celgene, Janssen, and GlaxoSmithKline, and personal fees from Takeda, Novartis, Sanofi, and Karyopharm. Ajay K. Nookta has received grant funding and personal fees from GlaxoSmithKline, Janssen, Bristol-Myers Squibb, Celgene, Takeda, and Amgen; and personal fees from Oncopetides and Spectrum. Ajali Chari has received grant funding and personal fees from Janssen, Celgene, Novartis, Amgen, Seattle Genetics, and Millennium/Takeda; personal fees from Bristol-Myers Squibb, Karyopharm, Sanofi, Oncopetides, and Antengene; and grant funding from Pharmacyclics. Douglas Sborov has received personal fees from Celgene, Janssen, and Amgen. AS has received grant funding and personal fees from GlaxoSmithKline, Janssen Oncology, and Karyopharm, and grant funding from Bristol-Myers Squibb and Celgene. Katja Weisel has received grant funding, personal fees, and non-financial support from Amgen, Celgene, Janssen, and Takeda; personal fees and non-financial support from Bristol-Myers Squibb; grant funding and non-financial support from Sanofi; and personal fees from Juno, Adaptive Biotech, and Karyopharm. Lionel Karlin has received personal fees for participation in advisory boards from Amgen, Janssen, Celgene, and Takeda, and travel support from Amgen and Janssen. Edward Libby has received personal fees from AbbVie and Janssen, and research funding from Celgene, Genentech, Amgen, and GlaxoSmithKline. Bertrand Arnulf has received non-financial and other support from Sanofi and Takeda (travel to congress for Sanofi and Takeda; and participation in advisory board for Takeda), and personal fees and other support from Janssen, Celgene, Takeda, and Amgen (travel to congress and honoraria for Janssen, Celgene, and Amgen; and participation in advisory board for Celgene and Amgen). Thierry Facon has received personal fees from Janssen, Celgene, Takeda, Amgen, Karyopharm, Oncopetides, and Roche. Cyrille Hulin has received personal fees from Celgene, Janssen, and Amgen. Paula Rodríguez-Otero has received personal fees and non-financial support from Celgene and Janssen, and personal fees from Kite Pharma, Amgen, Sanofi, AbbVie, Bristol-Myers Squibb, and Oncopetides. Saad Z. Usmani has received grant funding and personal fees from Amgen, Celgene, Sanofi, Seattle Genetics, Janssen, Takeda, and SkylineDX; personal fees from AbbVie and MundiPharma, and grant funding from Bristol-Myers Squibb and Pharmacyclics. Parameswaran Hari has received grant funding and personal fees from Celgene, Takeda, Janssen, and AbbVie; grant funding from GlaxoSmithKline, and personal fees from Bristol-Myers Squibb and Kite/Gilead. Rachid Baz has received grant funding from Celgene, Karyopharm, Sanofi, Merck, Bristol-Myers Squibb, and AbbVie, and personal fees from GlaxoSmithKline. Hang Quch has received grant funding from Celgene and Amgen; personal fees from GlaxoSmithKline, Karyopharm, Janssen and Takeda, and non-financial research support from Sanofi. Peter M. Voorhees is a consultant for Amgen, Celgene, Janssen, Bristol-Myers Squibb, Novartis, Takeda, Oncopetides, and Teneo-Bio, and has participated in speakers’ bureaux for Amgen, Celgene, and Janssen. Ira Gupta is an employee of and holds stocks and shares in GlaxoSmithKline and holds stocks and shares in Novartis. Axel Hoos, January Baron, Trisha Piontek, Roxanne C. Jewell, and Joanna Opalinska are employees of and hold stocks and shares in GlaxoSmithKline. Eric Zhi and Eric Lewis are employees of GlaxoSmithKline. Rakesh Popat has received grant funding, personal fees, and non-financial support from Takeda; personal fees and non-financial support from Janssen, Celgene, and GlaxoSmithKline, and personal fees from AbbVie. Simona Degli Eposti has received personal fees from GlaxoSmithKline and the personal fees and non-financial support from GlaxoSmithKline andholds stock and shares in GlaxoSmithKline. Paul Richardson has received grant funding and personal fees from Celgene, Takeda, and Oncopetides; grant funding from Bristol-Myers Squibb, and personal fees from Janssen, Karyopharm, Amgen, and Sanofi. Adam D. Cohen has received grant funding from GlaxoSmithKline, Bristol-Myers Squibb, and Novartis; personal fees from Janssen, Takeda, Oncopetides, Kite Pharma, and Seattle Genetics, and personal fees and other association with GlaxoSmithKline and Celgene. Ashraf Badros, K. Martin Kortüm, Al-Ola Abdalila, and Natalie Callander declare no competing interests.
Background: Unmet Needs in RRMM

Treatment of Patients with RRMM Remains Challenging Despite Numerous Therapeutic Advances

Analyses of long-term outcomes for patients with RRMM reveal that overall survival, median progression-free survival, and depth of response decrease with successive lines of treatment.

Patients with disease refractory to immunomodulatory agents, PIs, and anti-CD38 mAbs have a poor prognosis.

Effective novel therapies, with acceptable safety profiles, are needed for patients with RRMM who have exhausted available treatment options.

Belantamab mafodotin (belamaf; GSK2857916): first-in-class anti-BCMA antibody-drug conjugate with a multimodal mechanism of action (Figure)

Single-agent belamaf induced deep, durable responses in patients with RRMM, including patients refractory to immunomodulatory agents, PIs, and alkylators, in the Phase 1, DREAMM-1 study (NCT02064387) 3,4

Here we present the primary analysis of the pivotal, ongoing, Phase II DREAMM-2 study (NCT03525678) 5

Belamaf Mechanisms of Action 6

1. ADC mechanism
2. ADCC/ADCP mechanism
3. Potential immunogenic cell death

ADC, antibody drug conjugate; ADCC/ADCP, antibody-dependent cellular cytotoxicity/phagocytosis; BCMA, B-cell maturation antigen; DREAMM, DRiving Excellence in Approaches to Multiple Myeloma; mAb, monoclonal antibody; PI, proteasome inhibitor; RRMM, relapsed or refractory multiple myeloma.

DREAMM-2 Study Design
Pivotal, Registrational, Phase 2 Study of Two Doses of Belamaf in Heavily Pre-treated RRMM

A phase 2, open-label, randomised, 2-dose study of belamaf in patients with RRMM refractory to immunomodulatory agents and PIs and refractory/intolerant to an anti-CD38 mAb (NCT03525678 and EudraCT: 2017-004810-25)

Eligibility Criteria
- Measurable disease*
- Refractory to immunomodulatory agents and PIs, and refractory/intolerant to an anti-CD38 mAb
- European Cooperative Oncology Group Performance Status of 0–2
- Not exposed to a prior BCMA-targeted therapy
- ≥3 prior lines of therapy
- Prior autologous-stem cell transplant allowed; allogeneic-stem cell transplant excluded

Primary Outcome
- Overall response rate: % of patients with a partial response or better by IMWG 2016 criteria

Secondary Outcomes
- Efficacy: Clinical benefit rate (% of patients with a minimal response or better), progression-free survival, overall survival, duration of response, time to response, and time to progression
- Safety, including ocular findings
- Pharmacokinetic profiles
- Anti-drug antibodies activities
- Patient-reported outcomes, including ocular questionnaires
- Health-related quality of life

Treatment until disease progression or unacceptable toxicity
- Belamaf 3.4 mg/kg IV (frozen) every 3 weeks, n=99
- Belamaf 2.5 mg/kg IV (frozen) every 3 weeks, n=97

A separate cohort of patients were enrolled who received the lyophilized presentation of the 3.4 mg/kg every 3 week dose. *Measurable disease defined as serum myeloma protein (M-protein) ≥0.5 g/dL; urine M-protein ≥200 mg/24h; serum free-light chain (FLC) assay; Involved FLC level ≥10 mg/dL and an abnormal serum FLC ratio (>0.26 or >1.65); 3L+, third and later lines; BCMA, B-cell maturation antigen; DREAMM, Driving Excellence in Approaches to Multiple Myeloma; IMWG, International Myeloma Working Group; IV, intravenous; mAb, monoclonal antibody; PI, proteasome inhibitor; RRMM, relapsed or refractory multiple myeloma.

Baseline Characteristics and Treatment Exposure

Similar baseline demographics and disease characteristics were observed in the two dose groups

Patients with ISS stage III disease, extramedullary disease, and high-risk cytogenetic features were well represented in both dose groups

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Belamaf 2.5 mg/kg (N=97)</th>
<th>Belamaf 3.4 mg/kg (N=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (IQR), years</td>
<td>65 (60–70)</td>
<td>67 (61–72)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>51 (53)</td>
<td>56 (57)</td>
</tr>
<tr>
<td>ISS stage at screening, n (%)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>21 (22)</td>
<td>18 (18)</td>
</tr>
<tr>
<td>II</td>
<td>33 (34)</td>
<td>51 (52)</td>
</tr>
<tr>
<td>III</td>
<td>42 (43)</td>
<td>30 (30)</td>
</tr>
<tr>
<td>High-risk cytogenetics, n (%)†</td>
<td>41 (42)</td>
<td>47 (47)</td>
</tr>
<tr>
<td>Extramedullary disease, n (%)</td>
<td>22 (23)</td>
<td>18 (18)</td>
</tr>
<tr>
<td>Number of prior lines of therapy, median (range)</td>
<td>7 (3–21)</td>
<td>6 (3–21)</td>
</tr>
<tr>
<td>Refractory to prior immunomodulatory agents and PIs, n (%)</td>
<td>97 (100)</td>
<td>99 (100)</td>
</tr>
</tbody>
</table>

Both dose groups received a median of 3 treatment cycles (range 1–11 in the 2.5 mg/kg group and 1–10 in the 3.4 mg/kg group). Median dose intensity was 2.47 mg/kg (IQR 1.56–2.50) for the 2.5 mg/kg group; due to the higher incidence of dose modifications, dose intensity was lower than the intended dose for the 3.4 mg/kg dose group (median 2.95 mg/kg; IQR 1.85–3.40).

* 1 patient in the belamaf 2.5 mg/kg group had unknown disease stage at screening. †High-risk cytogenetics defined as having any of the following cytogenetic features: t(4;14), t(14;16), 17p13del, or 1q21+. IQR, interquartile range; ISS, International Staging System; PI, proteasome inhibitor.

Overall Response Rate
Meaningful Overall Response Rate With Deep Responses in Both Dose Groups

Time from first dose to best confirmed response in patients with an overall response

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ORR, n (%)</th>
<th>97.5% CI</th>
<th>sCR, n (%)</th>
<th>CR, n (%)</th>
<th>VGPR, n (%)</th>
<th>PR, n (%)</th>
<th>CBR, n (%)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belamaf 2.5 mg/kg (N=97)</td>
<td>30 (31)</td>
<td>[20.8–42.6]</td>
<td>2 (2)</td>
<td>1 (1)</td>
<td>15 (15)</td>
<td>12 (12)</td>
<td>33 (34)</td>
<td>[24.7–44.3]</td>
</tr>
<tr>
<td>Belamaf 3.4 mg/kg (N=97)</td>
<td>34 (34)</td>
<td>[23.9–46.0]</td>
<td>3 (3)</td>
<td>0</td>
<td>17 (17)</td>
<td>14 (14)</td>
<td>39 (39)</td>
<td>[29.7–49.7]</td>
</tr>
</tbody>
</table>

Median Duration of Response, Progression-free Survival and Overall Survival
Follow-up is Ongoing and Should Confirm Durability

Duration of Response

Median duration of response was not reached in either dose group

Estimated probability of having a duration of response of ≥4 months
- Belamaf 2.5 mg/kg: 78% (95% CI 57–89)
- Belamaf 3.4 mg/kg: 87% (95% CI 69–95)

18 patients in 2.5 mg/kg group and 25 in the 3.4 mg/kg group had a duration of response ≥4 months and continued to be on treatment

Progression-free Survival

Median (95% CI) progression-free survival
- Belamaf 2.5 mg/kg: 2.9 (2.1–3.7) months
- Belamaf 3.4 mg/kg: 4.9 (2.3–6.2) months

In patients with a minimal response or better, median progression-free survival was not reached in either dose group

Overall Survival

Overall survival data were not mature for either dose group

Intent-to-treat population. Median duration of follow-up was 6.3 and 6.9 months in the 2.5 mg/kg and 3.4 mg/kg cohorts, respectively.
CI, confidence interval; MR, minimal response; PR, partial response.
Summary of Adverse Events

Belamaf Demonstrated a Manageable Safety Profile With No New Safety Concerns Identified

<table>
<thead>
<tr>
<th>Number of patients with event (safety population), n (%)</th>
<th>Belamaf 2.5 mg/kg (N=95)</th>
<th>Belamaf 3.4 mg/kg (N=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1-2</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Keratopathy or corneal epithelium changes†</td>
<td>41 (43)</td>
<td>26 (27)</td>
</tr>
<tr>
<td>Thrombocytopenia‡</td>
<td>14 (15)</td>
<td>8 (8)</td>
</tr>
<tr>
<td>Anaemia</td>
<td>4 (4)</td>
<td>19 (20)</td>
</tr>
<tr>
<td>Nausea</td>
<td>23 (24)</td>
<td>0</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>18 (19)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Blurred vision§</td>
<td>17 (18)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Infusion-related reactions†</td>
<td>17 (18)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Increased aspartate aminotransferase</td>
<td>17 (18)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>13 (14)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Dry eye**</td>
<td>12 (13)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Neutropenia††</td>
<td>4 (4)</td>
<td>5 (5)</td>
</tr>
</tbody>
</table>

The most common Grade 1-2 adverse event was keratopathy; the most common Grade 3–4 adverse events were keratopathy, thrombocytopenia, and anaemia.

Listed in order of decreasing frequency of Any Grade events in the 2.5-mg/kg cohort. *Events reported based on Common Terminology Criteria for Adverse Events criteria v4.03 in the safety population (including all patients who received at least one dose of trial treatment). †Keratopathy or corneal epithelium changes (considered an adverse event of special interest [AESI]) were observed by ophthalmic examination. ‡Thrombocytopenia (considered an AESI) includes preferred terms thrombocytopenia, decreased platelet count, and cerebral haemorrhage. §Blurred vision includes preferred terms vision blurred, diplopia, visual acuity reduced and visual impairment. ¶Infusion-related reactions (considered an AESI) includes preferred terms infusion-related reaction, pyrexia, chills, diarrhea, nausea, asthenia, hypertension, lethargy, tachycardia, vomiting, cough and hypotension occurring within 24 hours of infusion. ‡‡Dry eye includes preferred terms dry eye, ocular discomfort, eye pruritus and foreign body sensation in eye. ††Neutropenia includes neutropenia, febrile neutropenia and neutrophil count decreased. Lornal S et al. Lancet Oncology 2020;21:207.
Safety Overview

AEs Were Managed with Dose Delays and Reductions; AE-led Discontinuations Were Uncommon

<table>
<thead>
<tr>
<th>Number of patients with event (safety population), n (%)</th>
<th>Belamaf 2.5 mg/kg (N=95)</th>
<th>Belamaf 3.4 mg/kg (N=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>93 (98)</td>
<td>99 (100)</td>
</tr>
<tr>
<td>Adverse events leading to permanent treatment discontinuation</td>
<td>8 (8)</td>
<td>10 (10)</td>
</tr>
<tr>
<td>Adverse events leading to dose reduction</td>
<td>28 (29)</td>
<td>41 (41)</td>
</tr>
<tr>
<td>Adverse events leading to dose delay</td>
<td>51 (54)</td>
<td>61 (62)</td>
</tr>
<tr>
<td>Any serious adverse events</td>
<td>38 (40)</td>
<td>47 (47)</td>
</tr>
<tr>
<td>Fatal serious adverse events related to study treatment</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Hemophagocytic lymphohistiocytosis*</td>
<td>0</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

Dose reductions and delays were most frequently due to keratopathy:
- Reductions in 23% and 27% of patients in the 2.5 mg/kg and 3.4 mg/kg groups, respectively
- Delays in 47% and 48% of patients in the 2.5 mg/kg and 3.4 mg/kg groups, respectively

Only 4 patients permanently discontinued due to keratopathy (1 in the 2.5 mg/kg group and 3 in the 3.4 mg/kg group)

Events reported based on Common Terminology Criteria for Adverse Events criteria v4.03 in the safety population (including all patients who received at least one dose of trial treatment).
*Associated with viral/bacterial infection.
AE, adverse event.
Adverse Event of Special Interest: Keratopathy

Corneal Events, a Known Effect of Mafodotin,1,2 Occurred in Patients Treated With Belamaf in DREAMM-22

The nature of corneal events reported in DREAMM-2 is not uncommon for ADCs that use MMAF or other microtubule-targeting cytotoxins1

The exact mechanism for onset of these events is unknown, and keratopathy could occur with or without symptoms1

Initial results of the ocular sub-study suggest corticosteroid eye drops were an ineffective prophylaxis for changes to the corneal epithelium1

<table>
<thead>
<tr>
<th>Number of patients with event (safety population), n (%)</th>
<th>Belamaf 2.5 mg/kg (N=95)</th>
<th>Belamaf 3.4 mg/kg (N=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1-2</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Keratopathy or corneal epithelium changes*</td>
<td>41 (43)</td>
<td>26 (27)</td>
</tr>
<tr>
<td>Most common corneal symptoms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blurred vision</td>
<td>17 (18)</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Dry eye</td>
<td>12 (13)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

*Keratopathy (corneal epithelium changes) was considered an adverse event of special interest and was observed by ophthalmic examination. † Due to sickness or unwillingness to come back for further examination.

ADC, antibody-drug conjugate; IQR, interquartile range; MMAF, monomethyl auristatin F; IQR, interquartile range.

Keratopathy: Time to Resolution

Among patients with keratopathy worse than baseline at the end of treatment, median (IQR) time to resolution was:
Belamaf 2.5 mg/kg: 71 (57–99) days
Belamaf 3.4 mg/kg: 96 (70–127) days

Transient Worsening Of Vision

Three patients experienced transient worsening of vision (≥20/200) in both eyes:
One patient in the 2.5 mg/kg group and two patients in the 3.4 mg/kg group
All three patients saw an improvement in best-corrected visual acuity (i.e., returned to baseline during follow-up) and keratopathy resolution

Definite Worsening Of Vision

2.5 mg/kg group

Among 22 patients with definite worsening of vision at end of treatment, 15 (68%) recovered and 7 (32%) were no longer in follow-up†

Median time to resolution post-treatment exposure: 21.0 days (IQR 14–36)

3.4 mg/kg group

Among 22 patients with definite worsening of vision at the end of treatment, 10 (45%) recovered and 6 (27%) were no longer in follow-up†

Median time to resolution after treatment exposure: 63.5 days (23.0–127.0)

Permanent loss of vision was not reported in either dose group
DREAMM-2: Conclusions

Single-agent belamaf (2.5 mg/kg or 3.4 mg/kg) every 3 weeks showed clinically meaningful, deep and durable responses in patients with heavily pre-treated RRMM

- Overall responses were achieved in >30% of patients in each dose group and ~20% achieved a VGPR or better

Belamaf appears to have a manageable safety profile with no new safety concerns identified

- Corneal changes were common; however, they were mostly restricted to the epithelium and few patients permanently discontinued treatment due to these events
- The nature of corneal events reported for DREAMM-2 is not uncommon in antibody-drug conjugates that use MMAF or other microtubule-targeting cytotoxins

Belamaf is easy to administer via a short, in-office, off-the-shelf infusion with no mandatory premedication for infusion-related reactions

Belamaf shows anti-myeloma activity in patients with RRMM, particularly those with heavily pre-treated disease refractory to a PI and immunomodulatory agent, and refractory/intolerant to an anti-CD38 mAb

mAb, monoclonal antibody; MMAF, monomethyl auristatin F; PI, proteasome inhibitor; RRMM, relapsed or refractory multiple myeloma; VGPR, very good partial response.
Acknowledgements

The authors would like to thank investigators, patients and caregivers, as well as the eye care professionals/colleagues and all of the other listed individuals in the acknowledgements section of the manuscript. These findings have been previously published¹ and are presented with permission and on behalf of the original authors. Study funded by GlaxoSmithKline; drug linker technology licensed from Seattle Genetics; mAb produced using POTELLIGENT Technology licensed from BioWa. Medical writing assistance provided by Sarah Hauze of Fishawack, funded by GlaxoSmithKline.