DREAMM-5: Platform Trial Evaluating Belantamab Mafodotin (a BCMA-Directed Immunoconjugate) in Combination With Novel Agents in Relapsed/Refractory Multiple Myeloma (RRMM)

Paul Richardson¹, Beata Holkova², Nicola Jackson³, Thelma Netherway³, Maria Brouch², Sofia Paul², Geraldine Ferron-Brady², Anne Yeakey⁴, Chris Shelton², Rocio Montes de Oca², L. Mary Smith⁵, Chris Ahlers², Marc Ballas², Elaine Paul⁴, Ira Gupta²

¹Dana-Farber Cancer Institute, Boston, MA, USA; ²GlaxoSmithKline, Upper Providence, PA, USA; ³GlaxoSmithKline, Stockley Park, UK; ⁴GlaxoSmithKline, Research Triangle Park, NC, USA; ⁵SpringWorks Therapeutics Inc., Stamford, CT, USA
Presenting author: IG is an employee of and holds stocks and shares in GlaxoSmithKline and holds stocks and shares in Novartis.

Co-authors: PR has received grant funding and personal fees from Celgene, Takeda, and Oncopeptides; grant funding from Bristol-Myers Squibb (BMS), and personal fees from Janssen, Karyopharm, Amgen, and Sanofi. BH, NJ, TN, MB, SP, GF-B, AY, CS, RMO, CMA, MB, and EMP are employees of and hold stocks and shares in GlaxoSmithKline. LMS is an employee of and holds stocks and shares in SpringWorks.
Background

Unmet need

- Patients with RRMM who have relapsed through multiple prior lines of therapy need novel, effective, targeted agents

Belantamab mafodotin (belamaf; GSK2857916)

- First-in-class anti-BCMA antibody-drug conjugate with multimodal mechanisms of action (Figure)

- In the DREAMM-2 study, which is presented at this congress, single-agent belamaf demonstrated a manageable safety profile and rapid, deep and durable clinical responses in patients with heavily pretreated RRMM

Combination strategies

- Combining belamaf with agents with other mechanisms of action has the potential to achieve synergistic effects in multiple myeloma

- DREAMM-5 (NCT04126200) is a phase 1/2 platform trial in which multiple belamaf-containing combinations will be evaluated in sub-studies under one master protocol

Belaf Mechanisms of Action

1. ADC mechanism
2. ADCC/ADCP mechanism
3. Potential immunogenic cell death

ADC, antibody-drug conjugate; ADCC/ADCP, antibody-dependent cellular cytotoxicity/phagocytosis; BCMA, B-cell maturation antigen; DREAMM, DRiving Excellence in Approaches to Multiple Myeloma; RRMM, relapsed/refractory multiple myeloma.

The DREAMM-5 platform trial (NCT04126200) is a phase 1/2 study that incorporates a design into one master protocol, wherein multiple belamaf-containing combinations will be evaluated in separate sub-studies to identify effective doublet combinations versus a shared belamaf monotherapy control arm.

Dose exploration (Phase 1)

- Each sub-study will consist of multiple dosing cohorts, and may involve dose-escalation or de-escalation cohorts.

<table>
<thead>
<tr>
<th>Dose level</th>
<th>Sub-study</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10 per dose level</td>
<td>Sub-study 1</td>
</tr>
<tr>
<td>Belamaf GSK3174998</td>
<td></td>
</tr>
<tr>
<td>≤10 per dose level</td>
<td>Sub-study 2</td>
</tr>
<tr>
<td>Belamaf GSK3359609</td>
<td></td>
</tr>
<tr>
<td>≤10 per dose level</td>
<td>Sub-study 3</td>
</tr>
<tr>
<td>Belamaf Nirogacestat</td>
<td></td>
</tr>
<tr>
<td>≤10 per dose level</td>
<td>Sub-study 4</td>
</tr>
<tr>
<td>Belamaf D</td>
<td></td>
</tr>
</tbody>
</table>

More sub-studies can be added.

Cohort expansion (Phase 2)

- Patients will be randomised first to a sub-study then within a sub-study to either investigational combination treatment or shared belamaf monotherapy control arm.

<table>
<thead>
<tr>
<th>Dose level</th>
<th>Sub-study 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤35</td>
<td>Sub-study 1</td>
</tr>
<tr>
<td>Belamaf RP2D GSK3174998</td>
<td></td>
</tr>
<tr>
<td>≤35</td>
<td>Sub-study 2</td>
</tr>
<tr>
<td>Belamaf RP2D GSK3359609</td>
<td></td>
</tr>
<tr>
<td>≤35</td>
<td>Sub-study 3</td>
</tr>
<tr>
<td>Belamaf RP2D Nirogacestat</td>
<td></td>
</tr>
<tr>
<td>≤35</td>
<td>Sub-study 4</td>
</tr>
<tr>
<td>Belamaf RP2D D</td>
<td></td>
</tr>
</tbody>
</table>

Interim analysis based on ORR to determine

1. Whether to proceed to cohort expansion
2. RP2D

Primary analysis

6 months after last patient first dose for each sub-study.

ORR, overall response rate; RP2D, recommended phase 2 dose.
Objectives and Endpoints

<table>
<thead>
<tr>
<th>Dose escalation</th>
<th>Primary</th>
<th>Endpoints</th>
<th>Secondary</th>
<th>Objectives</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Assess safety and tolerability of belamaf in combination with other anti-cancer treatments and establish recommended phase 2 dose</td>
<td>Dose-limiting toxicities* AEs</td>
<td>Objective</td>
<td>Evaluate clinical efficacy measures</td>
<td>Overall response rate†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Describe exposure</td>
<td>Drug concentrations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assess ADAs of each agent</td>
<td>ADAs against IV treatments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Further explore safety and tolerability</td>
<td>AESIs, ocular findings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cohort expansion</th>
<th>Primary</th>
<th>Endpoints</th>
<th>Secondary</th>
<th>Objectives</th>
<th>Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Assess clinical activity of belamaf at the recommended phase 2 dose in combination with other anti-cancer treatments vs belamaf monotherapy</td>
<td>Overall response rate†</td>
<td>Objective</td>
<td>Further assess clinical activity</td>
<td>CBR†, PFS, DoR, TTR, OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Further characterise safety</td>
<td>AEs, AESIs, ocular findings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evaluate plasma concentrations of belamaf and combination treatments</td>
<td>ADAs against IV treatments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drug concentrations</td>
<td></td>
</tr>
</tbody>
</table>

Exploratory: dose escalation and cohort expansion

- Pharmacokinetics for each agent
- Bone marrow MRD status
- BCMA expression

- Pharmacodynamics (target engagement) markers and plasma soluble BCMA levels, among others, as candidate prognostic and predictive biomarkers
- Health-related quality of life (cohort expansion only)

* Defined as Grade 3, 4 or 5 hematologic (febrile neutropenia or thrombocytopenia with clinically significant bleeding) or non-hematologic (except corneal AEs, Grade 3 or 4 nausea, vomiting, diarrhoea, or TLS resolving ≤7 days, or Grade 3 controlled hypertension). Grade 4 corneal toxicity, or liver/other organ toxicity meeting stopping criteria. † International Myeloma Working Group criteria. † ADA, anti-drug antibody; AE, adverse event; AESI, AE of special interest; BCMA, B-cell maturation antigen; CBR, clinical benefit rate; DoR, duration of response; IV, intravenous; MRD, minimal residual disease; OS, overall survival; PFS, progression-free survival; TTR, time to response.
Patient Population

Key inclusion criteria

• Age ≥18 years
• Histologically or cytologically confirmed MM (IMWG criteria)
• Measurable disease (according to serum and/or urine M-protein and/or serum free light chain levels)
• ECOG Performance Status 0–2
• ≥3 prior lines of therapy (consisting of an immunomodulatory agent, a proteasome inhibitor, and an anti-CD38 mAb)
• Previous anti-BCMA targeted therapy allowed except prior belamaf or CAR T-cell therapy ≤3 months of screening
• History of autologous stem cell transplantation allowed if >100 days prior to screening and no active infections
• Acceptable haematological (neutrophil, haemoglobin and platelet), and vital organ (hepatic, cardiac and renal) function

Key exclusion criteria

• Current corneal epithelial disease (except mild punctate keratopathy)
• Current unstable liver or biliary disease
• Other malignancies (except those disease-free for >2 years or curatively treated non-melanoma skin cancer)
• Cardiovascular risk
• Active infection or HIV
• Recent history (≤6 months) of acute diverticulitis, inflammatory bowel disease, intra-abdominal abscess, GI obstruction
• Hepatitis B surface antigen or hepatitis B core antibody present, or positive for hepatitis C at screening or ≤3 months prior to first dose of study treatment
• Prior/concomitant therapy:
 • Previous belamaf treatment
 • Other mAbs within 30 days, systemic antimyeloma therapy or radiotherapy within 14 days, or plasmapheresis within 7 days of first dose of study drug
 • CAR T-cell therapy ≤3 months of screening
 • Prior allogeneic transplant
 • Major (except bone-stabilising) surgery ≤30 days from screening

BCMA, B-cell maturation antigen; ECOG, Eastern Cooperative Oncology Group; IMWG, International Myeloma Working Group; mAb, monoclonal antibody; MM, multiple myeloma;
Sub-study 1: Belamaf + GSK3174998

GSK3174998 is a humanised wild-type IgG1 anti-OX40 agonistic mAb that binds to the co-stimulatory OX40 receptor, expressed primarily on activated CD4+ and CD8+ T cells

- OX40 signalling promotes effector T-cell proliferation and survival, while blocking the suppressive function of regulatory T cells
 - This induces a T-cell mediated immune response against tumour cells (Figure)

- GSK3174998 has potential to overcome immune resistance and enhance immune-mediated antitumour activity
 - This activity is anticipated to be enhanced when combined with an agent causing immunogenic cell death, like belamaf

Preclinical data of belamaf plus a mouse OX40 surrogate antibody support the potential utility of combination therapy with belamaf and GSK3174998\(^1\)

mAb, monoclonal antibody.
\(^1\) Montes de Oca R, et al. *EHA Library* 2019; 266357; PF558
Sub-study 2: Belamaf + GSK3359609

GSK3359609 is a humanised anti-ICOS Ig4 mAb selected for its nanomolar binding to, and agonist activity in, ICOS-expressing CD4+ and CD8+ effector T cells

- ICOS is a co-stimulatory receptor and member of the CD28 superfamily and plays an important role in the proliferation, differentiation, survival, and function of T cells

- GSK3359609 was designed and Fc-optimised to enhance T-cell function and enable antitumour responses without the depletion of ICOS-expressing cells (Figure)

The unique mechanistic profile of GSK3359609 as an ICOS agonist allows investigation of the antitumor potential of targeting a T-cell co-stimulator alone and in combination with belamaf

mAb, monoclonal antibody
Sub-study 3: Belamaf + nirogacestat

Nirogacestat (PF-03084014, SpringWorks Therapeutics) is a novel gamma-secretase inhibitor that prevents the cleavage of transmembrane proteins including Notch, APP and BCMA\(^1,2\)

- Gamma secretase has been found to cleave membrane-bound BCMA releasing it into the extracellular domain as soluble BMCA\(^2\), which may interfere with and limit efficacy of BCMA-directed therapy\(^3\)
- Inhibition of gamma secretase activity has been shown to increase cell-surface levels and availability of BCMA\(^2\) (Figure)

Preclinical data have shown synergistic effect of combining belamaf and nirogacestat, providing the rationale to support clinical evaluation of this combination in RRMM.\(^4\)

APP, amyloid precursor protein; BCMA, B-cell maturation antigen; RRMM, relapsed/refractory multiple myeloma.
Current status: All sub-studies are open to accrual

Acknowledgements
These findings have been previously presented\(^1\) and are included here with permission and on behalf of the original authors.

Study funded by GlaxoSmithKline (208887)
Drug linker technology licensed from Seattle Genetics
Monoclonal antibody produced using POTELLIGENT Technology licensed from BioWa

1. Richardson P et al. ASH 2019; Poster 1857.