INTRODUCTION

- Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor, to function as a TGF-β "trap," fused to a human IgG1 antibody blocking PD-L1 (Figure 1).

RESULTS

- **Figure 2. Change in target lesions assessed by investigator**
 - NK
 - Tumor cells are also a major source of TGF-
 - PD-1

- **Figure 3. Best change in target lesions from baseline assessed by investigator**
 - Patients with a BOR of NE (n=5) are not included in this figure. Five additional patients were not included in this figure because it closely mimics human stage IV

- **Figure 4. HMGA2 expression by investigator-assessed BOR**
 - HMGA2 expression was 32-fold higher in patients who experienced disease control with bintrafusp alfa compared with those who had PDI (Figure 4).

- **Figure 5. Association between HMGA2 and TGF-β signaling, and bintrafusp alfa pharmacodynamic effects in a TNBC model**
 - Bintrafusp alfa or Trap control (TGF-β trap linked to an inactive anti-PD-L1) reduced expression of these HMGA2-correlated TGF-β signaling-related genes relative to anti-PD-L1 or isotype control treatment (Figure 6), suggesting that HMGA2 is correlated with TGF-β-induced signaling more strongly in the presence of TGF-β sequestration.

- **Figure 6. Effects of bintrafusp alfa on HMGA2 expression and TGF-β signaling activity**
 - Gene expression

- **Figure 7. Correlation between HMGA2 and TGF-β genes Core genes**
 - HMGA2 expression significantly correlated with the expression of TGF-β receptors, ligands, collagen, and EMT-related genes in bintrafusp alfa-treated mice (Figure 7).

CONCLUSIONS

- **Patients with TNBC who experienced disease control with bintrafusp alfa had high expression of HMGA2**

- **In a murine model, the correlation of HMGA2 and TGF-β signaling was stronger in bintrafusp alfa-treated tumors compared with isotype control-treated tumors**

- **These data demonstrate a link between HMGA2 expression and TGF-β; bintrafusp alfa and Trap control reduced expression of HMGA2 and individual TGF-β signaling-related genes relative to anti-PD-L1**

- **Collectively, these observations warrant further analysis of the potential link between bintrafusp alfa antitumor activity and HMGA2**

- **Based on phase 1 trial results and biomarker analysis, a phase 2 study is planned to evaluate the clinical activity of bintrafusp alfa in patients with HMGA2-high TNBC**

ACKNOWLEDGMENTS

The authors thank the patients and their families, investigators, co-investigators, and the study teams at each of the participating centers and at Merck KGaA, Darmstadt, Germany, and EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, a business of Merck KGaA.

This study was funded by Merck KGaA and is part of an alliance between Merck KGaA and GlassmanHixson.

All authors are employees of EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany.

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from AACR and at the author’s cost.

Correspondence: Tsz-Lun Yeung, tsz-lun.yeung@emdserono.com

REFERENCES

Table No. 1573

- **Figure 8. Correlation between HMGA2 and TGF-β genes Core genes**

- **Table 1. **

Poster No. 1573

Association between TGF-β signaling and HMGA2, a potential biomarker for bintrafusp alfa in triple-negative breast cancer

EMD Serono Research & Development Institute, Inc., Billerica, MA, USA; a business of Merck KGaA, Darmstadt, Germany