DREAMM-5 Platform Trial: Belantamab Mafodotin (Belamaf) in Combination with Four Different Novel Agents in Patients with Relapsed/Refractory Multiple Myeloma (RRMM)

Paul Richardson,1 Ajay Nooka,2 Hang Quach,3 Suzanne Trudel,4 David Routledge,5,6 Kevin Song,7 Hareth Nahi,8 Sofia Paul,9 Josephine Khan,10 Maria Brouch,9 Geraldine Ferron-Brady,9 Anne Yeakey,11 Chris Shelton,9 Rocio Montes de Oca,9 L. Mary Smith,12 Ellie Im,13 Christoph M. Ahlers,9 Elaine M. Paul,11 Beata Holkova,9 Ira Gupta,9 Brandon E. Kremer,13 Paula Rodriguez Otero14

1Dana-Farber Cancer Institute, Boston, MA, USA; 2Emory University, Winship Cancer Institute, Atlanta, GA, USA; 3University of Melbourne, St. Vincent’s Hospital Melbourne, Melbourne, VIC, Australia; 4Princess Margaret Cancer Centre, Toronto, ON, Canada; 5Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia; 6Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; 7Vancouver General Hospital, Vancouver, BC, Canada; 8Karolinska University Hospital: Stockholm, Sweden; 9GlaxoSmithKline, Upper Providence, PA, USA; 10GlaxoSmithKline, Stevenage, UK; 11GlaxoSmithKline, Research Triangle Park, NC, USA; 12SpringWorks Therapeutics Inc., Stamford, CT, USA; 13GlaxoSmithKline, Waltham, MA, USA; 14Clínica Universidad de Navarra-Pamplona, Navarra, Spain

Poster No. 2299 | Presented at the 62nd American Society of Hematology Annual Meeting and Exposition (Virtual Format) | December 5–8, 2020
Background

Unmet need
Patients with heavily pre-treated RRMM have a poor prognosis; novel, well-tolerated treatments that induce lasting responses are warranted1,2

Belantamab mafodotin (belamaf; BLENREP)
- First-in-class anti-BCMA antibody-drug conjugate with multimodal mechanism of action2 (Figure)
- In the DREAMM-2 study, single-agent belamaf demonstrated a manageable safety profile and deep and durable clinical responses in patients with heavily pretreated RRMM with up to 13 months of follow-up4,5

Combination strategies
Combining belamaf with agents with complementary modes of action may increased efficacy or duration of response to address the unmet need in RRMM

Platform trial
The Platform trial is an efficient design incorporating a single master protocol, where multiple treatment combinations will be evaluated in separate sub-studies5,6

Methods: Platform Study Design

The DREAMM-5 platform trial (NCT04126200) is a Phase 1/2 study that incorporates an efficient design into one master protocol, wherein multiple belanaf-containing combinations will be evaluated in separate sub-studies to identify efficacious doublet combinations, vs a shared belanaf monotherapy control arm.

Key eligibility criteria:
- Confirmed MM diagnosis
- ≥3 prior therapy lines, including an immunomodulatory agent, proteasome inhibitor, and anti-CD38 antibody
- ECOG 0–2
- Measurable disease

Phase 1
Dose Exploration (DE)

Primary objective: DLTs, AEs

- Sub-study 1: belanaf + anti-OX40 GSK3174998 (n ≤10 per dose level)
- Sub-study 2: belanaf + feladilimab (n ≤10 per dose level)
- Sub-study 3: belanaf + nirogacestat (n ≤10 per dose level)
- Sub-study 4: belanaf + dostarlimab (n ≤10 per dose level)

DE interim analysis to determine:
- Feasibility of CE phase
- RP2D

Phase 2
Cohort Expansion (CE)

Primary objective: Overall response rate

- Sub-study 1: belanaf + anti-OX40 GSK3174998 (n ≥35)
- Sub-study 2: belanaf + feladilimab (n ≥35)
- Sub-study 3: belanaf + nirogacestat (n ≥35)
- Sub-study 4: belanaf + dostarlimab (n ≥35)

More sub-studies can be added

*sub-studies may include dose-escalation or de-escalation cohort(s) guided by modified toxicity probability interval principles; †Assignment to sub-study in DE will be according to treatment slot availability. When more than one sub-study or dose level is enrolling, allocation will be by pre-determined algorithm; ‡Participants in CE are stratified by sub-study and prior lines of therapy (3–4 vs >4); ‡Prior anti-BCMA therapy is permitted; **As measured by serum and/or urine M-protein and/or serum free light chain levels.

AE, adverse event; CE, cohort expansion; DE, dose explorations; DLT, dose-limiting toxicities; DREAMM, Driving Excellence in Approaches to Multiple Myeloma; ECOG, Eastern Cooperative Oncology Group; ORR, overall response rate; PD, pharmacodynamics; PK, pharmacokinetics; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma.
Sub-study 1: Belamaf + Anti-OX40 GSK3174998

GSK3174998 is a humanized wild-type IgG1 anti-OX40 agonistic mAb that binds to the co-stimulatory OX40 receptor, expressed primarily on activated CD4+ and CD8+ T cells.

- OX40 signalling promotes effector T-cell proliferation and survival, while blocking the suppressive function of Treg cells.
- This induces a T-cell mediated immune response against cancer cells (Figure).
- GSK3174998 has potential to overcome immune resistance and enhance immune-mediated anti-cancer activity.
 - Pre-clinical data for belamaf plus a mouse OX40 surrogate antibody support the potential utility of combination therapy with belamaf and GSK3174998.

Combining belamaf with OX40 could increase anti-tumor activity via increased infiltration and activation of intra-tumor DCs, antigen-presenting T cells, and induce hallmarks of ICD potentially leading to an adaptive immune response.

APC, antigen-presenting cell; DC, dendritic cells; ICD, immunogenic cell death; IgG, immunoglobulin G; mAb, monoclonal antibody; Treg, regulatory T cell.

Sub-study 2: Belamaf + Feladilimab

Feladilimab (GSK3359609) is a humanized anti-ICOS IgG4 mAb selected for its nanomolar binding to, and agonist activity in, ICOS-expressing CD4+ and CD8+ effector T cells.

ICOS is a co-stimulatory receptor member of the CD28 superfamily that plays an important role in the proliferation, differentiation, survival, and function of T cells.

Feladilimab was designed and Fc-optimised to enhance T-cell function and enable anti-cancer responses without the depletion of ICOS-expressing cells (Figure).

Combining belamaf with anti-tumor immune response-enhancing agents, such as feladilimab, could offer enhanced anti-tumor activity due to complementary mechanisms of action.

APC, antigen-presenting cell; CTLA4, cytotoxic T-lymphocyte-associated protein 4; CXCR5, C-X-C motif chemokine receptor 5; ICOS, inducible T-cell co-stimulatory; ICOS-L, ICOS ligand; IFN, interferon; IgG, immunoglobulin G; mAb, monoclonal antibody; MHC, major histocompatibility complex; TCR, T-cell receptor.

Sub-study 3: Belamaf + Nirogacestat

Nirogacestat (PF-03084014, SpringWorks Therapeutics) gamma-secretase inhibitor
that prevents the cleavage of transmembrane proteins including Notch, APP, and BCMA

Gamma secretase has been found to cleave membrane-bound BCMA, releasing the extracellular domain as sBCMA into circulation, which interferes with and limits efficacy of BCMA-directed therapies

Inhibition of gamma secretase activity has been shown to increase cell-surface levels and availability of BCMA and reduce sBCMA in circulation (Figure)

Pre-clinical data have shown synergistic effects of combining belamaf and nirogacestat, providing the rationale to support clinical evaluation of this combination in RRMM

Belamaf + Nirogacestat Combined Mechanism of Action

*Figure taken from Springworks Therapeutics, with permission. © Springworks Therapeutics, all rights reserved.

ADC, antibody-drug conjugate; APP, amyloid precursor protein; BCMA, B-cell maturation antigen; ECD, extracellular domain; GSI, gamma secretase inhibitor; MM, multiple myeloma; sBCMA, soluble BCMA.

American Society of Hematology
Sub-study 4: Belamaf + Dostarlimab

Dostarlimab is a humanized anti-PD-1 IgG4 mAb that blocks interactions between PD-1 and PD-L1 or PD-L2

Cancer cells have been shown to hijack the PD-1 checkpoint blockade by upregulating PD-L1 expression to evade immune control and facilitate tumor progression. Binding of PD-L1 or PD-L2 to PD-1 inhibits lymphocyte activation, blocking the immune-mediated anti-cancer response (Figure).

Early clinical data with dostarlimab showed encouraging anti-tumor activity in patients with endometrial cancer.

Expression of PD-1 and its ligands has been demonstrated in MM.

The addition of a PD-1 inhibitor to belamaf treatment has the potential to augment the anti-cancer response caused by belamaf-mediated ICD.

ICD, immunogenic cell death; IgG, immunoglobulin G; MM, multiple myeloma; PD-1, programmed cell death protein 1; PD-L1/2, programmed death-ligand 1 or 2.

Study Status

All sub-studies are at different stages of accrual

Additional sub-studies may be explored based on scientific rationale and/or pre-clinical combination study results

Belamaf is being evaluated in other combination strategies in various MM settings (posters 1419, 3247, 2302 at this meeting)
Further analyses of the pivotal DREAMM-2 study of single-agent belamaf are presented at this meeting (posters 1417, 2278, 3221, 3224, 3248)
Disclosures and Acknowledgments

PR: consultancy from AbbVie, Celgene, GlaxoSmithKline, and Takeda, research funding from Takeda, honoraria from Celgene, GlaxoSmithKline, Janssen, and Takeda, and travel expenses from GlaxoSmithKline, Janssen, and Takeda. **AN:** consultancy from Adaptive Technologies, Amgen, Bristol-Myers Squibb, Celgene, GlaxoSmithKline, Janssen Oncology, Karyopharm Therapeutics, Oncopeptides, Sanofi, and Takeda; research funding from Amgen, Janssen Oncology, and Takeda; personal fees from GlaxoSmithKline. **HQ:** consultancy and honoraria from Amgen, Celgene, GlaxoSmithKline, Janssen Cilag, and Karyopharm; research funding from Amgen, Celgene, and Sanofi. **ST:** consultancy from Amgen, Celgene, and GlaxoSmithKline; research funding from Amgen, Celgene, GlaxoSmithKline, Janssen, and Genentech; honoraria from Amgen Canada, Celgene, Janssen, Karyopharm, Sanofi, and Takeda. **DR:** consultancy from Celgene and Sandoz; honoraria from Amgen, Bristol-Myers Squibb, Celgene, and Sandoz. **KS:** consultancy from Amgen, Celgene, and GlaxoSmithKline; research funding from Celgene and Janssen; honoraria from Amgen, Celgene, Janssen, Otsuka, and Takeda. **HN** has no conflicts to declare. **SP, JK, MB, G F-B, AY, CS, RMdO, EI, CMA, EMP, BK, IG, BEK** and **PRO** are employees of GlaxoSmithKline, with ownership interest. **LMS** is an employee of SpringWorks Therapeutics, with ownership interest.

Sub-studies 1, 2, and 3 have been previously presented\(^1,2\)

This study was funded by GSK (208887). Drug linker technology licensed from Seagen Inc.; monoclonal antibody produced using POTELLIGENT Technology licensed from BioWa.

Editorial assistance was provided by Martina Stagno D’Alcontres of Fishawack Indicia Ltd and funded by GSK.

Please find the online version of this poster by scanning the QR (Quick Response) code or via http://tago.ca/ash5. Copies of this poster obtained through QR and/or text key codes are for personal use only and may not be reproduced without written permission of the authors.

Presenting author contact: Paul_Richardson@dfci.harvard.edu
