These slides are being provided in response to your request for information and not for further distribution.

This response is not intended to offer recommendations for administering GlaxoSmithKline products in a manner inconsistent with approved labeling.

In order for GlaxoSmithKline to monitor the safety of our products, we encourage healthcare professionals to report adverse events or suspected overdoses to the company at 888-825-5249.

NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.
BIOMARKERS
Defective Mismatch Repair and Microsatellite Instability in Endometrial Cancer
Table of Contents

Biology of Mismatch Repair and Genome Instability

Identification of Defective Mismatch Repair and Microsatellite Instability

Endometrial Cancer and Defective Mismatch Repair/Microsatellite Instability

Defective Mismatch Repair/Microsatellite Instability and Immune Checkpoint Blockade
Biology of Mismatch Repair and Genome Instability
Defective MMR occurs following genetic mutations

Consensus definition¹

MMR is a highly conserved DNA repair pathway used to reverse single-base mismatches or short insertions and deletions that occur within microsatellites/tandem repeat regions.

Four proteins, codified by homonym genes, that play a critical role in this process are MLH1 (mutL homolog 1), MSH2 (mutS homolog 2), MSH6 (mutS homolog 6), and PMS2 (postmeiotic segregation increased 2).

MLH1, MSH2, MSH6, and PMS2 function in heterodimers, namely MLH1-PMS2 and MSH2-MSH6.

Inactivation of these genes, which can occur as a result of germline and/or somatic mutations or epigenetic silencing, results in a defective MMR (dMMR) mechanism.

MMR, mismatch repair; mut, mutation.

DNA MMR Restores DNA Integrity

MMR Pathway Activation After Polymerase Error1,2

The figure is reproduced with the permission of GSK. Martin A, Scharff MD. Nat Rev Immunol. 2002;2:605-614.
Microsatellites Are Repetitive DNA Sequences Within the Genome

Consensus definition\(^1\)

- Also named short tandem repeats\(^1\)
- Repetitive DNA sequences that are distributed along the genome, in both coding and noncoding regions\(^1\)
- Microsatellites are tracts of repetitive DNA motifs (range in length from 1 to 6 or more base pairs), typically repeated 5-50 times\(^1,2\)
- Repeats are typically consistent throughout an individual but are highly polymorphic among different individuals (number of repeats of sequence varies between individuals).
- Repetitive nature renders them particularly sensitive to DNA mismatching errors, which can occur during DNA replication or induced by medical treatment (e.g. DNA alkylating agents, cisplatin) \(^1,4\)

Microsatellite instability results from defective DNA repair mechanisms

Consensus definition¹

MSI is a condition of genetic hypermutability resulting from defective DNA MMR

MSI is characterized by clustering of mutations in microsatellites typically consisting of repeat length alterations

The presence of MSI represents phenotypic evidence that MMR is not functioning normally

MMR, mismatch repair; MSI, microsatellite instability.

Key Points – Biology of Mismatch Repair and Genome Instability

- MMR is defined as a highly conserved mechanism used to restore DNA integrity after the occurrence of mismatching errors\(^1\)
 - Four proteins that play a critical role in this process include MLH1, MSH2, MSH6, and PMS2
- Inactivation of these genes, which can occur as a result of germline and/or somatic mutations or epigenetic silencing, results in dMMR\(^1\)
- Microsatellites are repetitive DNA sequences (1-6 bases) distributed in both coding and noncoding regions of the genome that are sensitive to DNA mismatching errors\(^1\)
- MSI is a condition of genetic hypermutability resulting from defective DNA dMMR, which indicates that MMR is not functioning normally\(^1\)

Identification of Defective Mismatch Repair and Microsatellite Instability
A number of tests are available to assess MMR/MSI status

MMR\(^{1-3}\)

- Tumor tissue staining for protein expression of 4 MMR genes: MLH1, MSH2, MSH6, and PMS2

MSI\(^{1-3}\)

- Assesses the proportion of alterations in a predetermined panel of microsatellite repeat markers that indicates the loss of MMR activity

NGS

- Provides a pan-cancer approach that results in a full mutational signature as an output

IHC, immunohistochemistry; MMR, mismatch repair; MSI, microsatellite instability; NCI, National Cancer Institute; NGS, next-generation sequencing; PCR, polymerase chain reaction.

Recommendaons for dMMR detection

Immunohistochemistry (IHC, Recommendation A)¹

- IHC is the preferred test
 - Using antibodies recognizing the 4 MMR proteins: MLH1, MSH2, MSH6, and PMS2

- IHC detects the presence or absence of MMR proteins
 - An abnormal IHC test shows at least one of the proteins “not detected”

Recommendations from the European Society of Medical Oncology (ESMO)

IHC, immunohistochemistry; MMR, mismatch repair

Recommendations for MSI Testing

Polymerase Chain Reaction (PCR, Recommendation B)¹

- When IHC results are unclear, confirmatory molecular analysis is recommended
 - PCR is the first-line of molecular analysis:
 - 2 possible panels –
 1. Bethesda/NCI panel (testing for 5 unique microsatellite loci) consists of 2 mononucleotide (BAT-25 and BAT-26) and 3 dinucleotide (D5S346, D2S123, and D17S250) repeats,¹ ² and
 2. Promega panel (testing for 7 unique microsatellite loci) consists of 5 poly-A mononucleotide repeats (BAT-25, BAT-26, NR-21, NR-24, and NR-27) as well as two pentanucleotide loci (used for specimen identification)¹ ²
 - Both panels have been/are being used to assess MSI in clinical trials. Molecular tests guarantee the highest values of specificity and sensitivity in MSI testing¹

MSI, microsatellite instability; NCI, National Cancer Institute; PCR, polymerase chain reaction.
Microsatellite Instability Phenotype Classifications:¹,²,³

- **MSS** (microsatellite stable) – tumors without microsatellite instability
- **MSI-L** (low microsatellite instability) – tumors showing MSI at only one of the predefined loci*
 - Occurs in the context of heritable cancer syndromes or sporadically
 - Represents global genomic instability and decreased DNA damage signaling
- **MSI-high** (high microsatellite instability) – tumors showing MSI at ≥2 of the predefined biomarker loci from the Bethesda/NCI or Promega panels or ≥30% of the loci if >5 markers are tested

<table>
<thead>
<tr>
<th>Microsatellite marker</th>
<th>Repeat type</th>
<th>Chromosomal location (gene near marker/GenBank number)</th>
<th>Bethesda/NCI panel¹,²</th>
<th>Promega panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT-25</td>
<td>Mononucleotide</td>
<td>4q12 (c-kit, intron 16)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BAT-26</td>
<td>Mononucleotide</td>
<td>2p 16.3p21 (hMSH2 gene, intron 5)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>NR-21</td>
<td>Mononucleotide</td>
<td>2p16 (MSH2)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NR-24</td>
<td>Mononucleotide</td>
<td>5q21/22 (APC)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MONO-27</td>
<td>Mononucleotide</td>
<td>17q111.2-q12 (BRCA1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D2S123</td>
<td>Dinucleotide</td>
<td>2p16 (MSH2)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D5S346</td>
<td>Dinucleotide</td>
<td>5q21/22 (APC)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D17S250</td>
<td>Dinucleotide</td>
<td>17q111.2-q12 (BRCA1)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Penta C</td>
<td>Pentanucleotide</td>
<td>21q22.3 (AL138752)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Penta D</td>
<td>Pentanucleotide</td>
<td>9p 12-13.3 (AC003656)</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

* Using the Promega method tumors are classified as MSS/MSI-H. The Promega system can help resolve cases of MSI-L into either MSI-H or MSS.

¹ The Bethesda Panel represents international criteria for the determination of microsatellite instability in colorectal cancer.

Recommendations for MSI Testing (cont.)

Next-generation sequencing (NGS, Recommendation C)\(^1\)

- NGS represents another type of molecular test to assess MSI that should be conducted only in selected centers devoted to these techniques
 - Advantages include the possibility of coupling MSI analysis with the determination of tumor mutational burden
 - Sophisticated bioinformatics protocols are necessary to use NGS as a method for MSI\(^2\)
 - Laboratories using NGS testing for MSI should have validated the assay for use in the cancer in which it is being used\(^2\)

MSI, microsatellite instability; NGS, next-generation sequencing
Key points: identification of dMMR/MSI

• Immunohistochemistry is recommended as the preferred test, using antibodies directed against 4 MMR proteins\(^1\)

• If results are unclear, further testing based on PCR analysis of selected DNA repeat sequences is recommended\(^1\)

• NGS represents another type of molecular test to assess MSI that should be conducted only in selected centers devoted to these techniques\(^1\)

DNA, deoxyribonucleic acid; MMR, mismatch repair; MSI, microsatellite instability; NGS, next-generation sequencing; PCR, polymerase chain reaction.

Endometrial Cancer and Defective Mismatch Repair/ Microsatellite Instability
dMMR/MSI-H Occurs in Endometrial Cancer

- Approximately 30% of endometrial cancers harbor dMMR/MSI-H\(^1\)
- dMMR and MSI-H populations are biologically similar and have been shown to have >95% concordance when assessed by respective IHC, PCR or NGS assays\(^2,3\)
- Lynch Syndrome, caused by germline mutations in the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, accounts for ~5% of all endometrial carcinomas\(^1\)
- The prognostic value of dMMR/MSI-H in endometrial cancer remains unclear\(^4\)

Reprinted from Trends CancerKloor M et al. The Immune Biology of Microsatellite-Unstable Cancer, 2:121-133, Copyright (2016), with permission from Elsevier

DNA, deoxyribonucleic acid; IHC, immunohistochemistry; dMMR, deficient mismatch repair; MSI, microsatellite instability; MSI-H, high microsatellite instability; NGS, next-generation sequencing; PCR, polymerase chain reaction

SGO Recommendations

SGO Clinical Practice Statement
Screening for Lynch Syndrome in EC

- All women diagnosed with endometrial cancer should undergo clinical screening
 - Review of personal and family history
 - And/or molecular screening for Lynch syndrome
- Two main strategies for assessing Lynch syndrome
 - Germline testing recommended for women at an increased risk for Lynch syndrome
defined by clinical criteria, but women who do not have a suggestive family history
may not be identified by clinical criteria
 - Universal molecular tumor testing for either all endometrial cancers or cancers
diagnosed at < 60 years old regardless of personal or family history
 - IHC for MLH1, MSH2, MSH6, and PMS2 expression is recommended as it is the most
effective and widely available
 - Tumors that show loss of MLH1 on IHC should undergo further testing for MLH1
 hypermethylation

IHC, immunohistochemistry; MMR, Mismatch Repair; dMMR, deficient Mismatch Repair Deficient; D&C, dilatation and curettage; EC, endometrial cancer; MSI, microsatellite instability; POLE, DNA polymerase epsilon.

Biomarker Selection in GARNET

- In GARNET, assignment of patients with endometrial cancer into different cohorts was determined by IHC testing for MMR status
 - Screening for GARNET could be performed using local IHC, PCR, or next-generation sequencing
 - If local IHC testing was not available, then MMR conducted by a central laboratory was allowed

IHC, immunohistochemistry; MMR, mismatch repair; MSI, microsatellite instability; MSI-H, high microsatellite instability; NGS, next-generation sequencing; PCR, polymerase chain reaction

MSI-H = microsatellite instability-high; MSS = microsatellite stable; dMMR = deficient mismatch repair; IHC = immunohistochemistry; NGS = Next Generation DNA Sequencing; MMR = mismatch repair; PCR = polymerase chain reaction

Defective Mismatch Repair/Microsatellite Instability and Immune Checkpoint Blockade
Somatic mutations in tumors can be recognized by the immune system\(^1\)

- MSI tumors carry 10-100 times as many somatic mutations compared with normal cells\(^1\)\(^-\)\(^3\)
 - PD-1 responsive cancers often have high mutational burden or carry a high mutational volume, owing to exogenous exposure to carcinogens\(^1\)
 - Smoking (lung cancer); UV light (melanoma)
- MSI tumors have prominent lymphocyte infiltrates, priming them for immune-mediated activity\(^1\)\(^,\)\(^4\)

Proposed Checkpoint Blockade: Mechanism of Action in MSI-High Tumors1,2

- Strongly expresses PD-1, PD-L1, CTLA-4, LAG-3, and IDO
- Increases cytotoxic T lymphocyte (CD3+/CD8+) invasion
- Increases presence of type 1 T-helper cells and expression of chemokines
- Increases presence of memory T lymphocytes

Determining dMMR/MSI Status Can Identify Patients Who May Benefit From PD-1/L1 Inhibition

- MSI-high/dMMR occurs in a variety of malignancies
- MSI and/or MMR testing is recommended by NCCN and ESMO clinical practice guidelines
- Multiple tests are available to assess MSI/MMR status across all solid tumors
- Diagnostic testing for MSI/MMR can identify patients likely to respond to treatment with PD-1/PD-L1 inhibitors