Niraparib Therapy in Patients With Newly Diagnosed Advanced Ovarian Cancer (PRIMA/ENGOT-OV26/GOG-3012)

A. González-Martín,1 B. Pothuri,2 I. Vergote,3 R.D. Christensen,4 W. Graybill,5 M.R. Mirza,6 C. McCormick,7 D. Lorusso,8 P. Hoskins,9 G. Freyer,10 F. Backes,11 K. Baumann,12 A. Redondo,13 R. Moore,14 C. Vulsteke,15 R.E. O'Cearbhaill,16 B. Lund,17 Y. Li,18 D. Gupta,18 B.J. Monk19

1Grupo Español de Investigación en Cáncer de Ovario (GEICO), Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain; 2Gynecologic Oncology Group (GOG), Department of Obstetrics/Gynecology, Perlmutter Cancer Center, NYU Langone Cancer Center, New York, NY, USA; 3Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Department of Gynaecology and Obstetrics, Division of Gynaecologic Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; 4Nordic Society of Gynaecological Oncology (NSGO), Research Unit of General Practice, Institute of Public Health, University of Southern Denmark, Odense, Denmark; 5GOG, Gynecologic Oncology, Medical University of South Carolina, Charleston, SC, USA; 6NSGO, Rigshospitalet–Copenhagen University Hospital, Copenhagen, Denmark; 7GOG, Legacy Medical Group Gynecologic Oncology, Portland, OR, USA; 8Multicentre Italian Trials in Ovarian Cancer and Gynecologic Malignancies (MITO), Fondazione IRCCS National Cancer Institute of Milan, Milan, Italy; 9US Oncology Research (USOR), Department of Medical Oncology, BC Cancer – Vancouver, Vancouver, BC, Canada; 10Groupe d’Investigateurs Nationaux pour l’Etude des Cancers Ovariens (GINECO), HCL Cancer Institute Department of Medical Oncology Lyon University, Lyon, France; 11Division of Gynecologic Oncology, Ohio State University, Columbus, OH, USA; 12Arbeitsgemeinschaft Gynäkologische Onkologie (AGO), Department of Gynecology and Obstetrics, Klinikum der Stadt Ludwigshafen, Ludwigshafen, Germany; 13GEICO, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain; 14USOR, Division of Gynecologic Oncology, Wilmot Cancer Institute, Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA; 15BGOG, Department of Medical Oncology and Hematology, AZ Maria Middelares, Gent, and Department of Molecular Imaging, Pathology, Radiotherapy & Oncology, Center for Oncological Research, Antwerp, Belgium; 16GOG, Gynecologic Medical Oncology, Memorial Sloan Kettering Cancer Center, and Department of Medicine, Weill Cornell Medical College, New York, NY, USA; 17NSGO, Department of Oncology, Aalborg University, Aalborg, Denmark; 18TESARO: A GSK Company, Waltham, MA, USA; 19Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, Phoenix Creighton University School of Medicine at St. Joseph’s Hospital, Phoenix, AZ, US
Disclosures

Advisory/Consultancy
AstraZeneca, Clovis Oncology, Genmab, ImmunoGen, Merck Sharp & Dohme, Oncoinvent, Pfizer/Merck, PharmaMar, Roche, TESARO: A GSK Company

Speaker Bureau/Expert Testimony
AstraZeneca, PharmaMar, Roche, TESARO: A GSK Company

Research Grant/Funding
Roche, TESARO: A GSK Company

Travel/Accommodation/Expenses
AstraZeneca, Roche, TESARO: A GSK Company
Niraparib is Effective in Recurrent OC (BRCAmut and BRCAwt)

- Advanced ovarian cancer is a leading cause of cancer deaths in women with up to 85% recurrence after completion of standard first-line platinum-based chemotherapy1

- Despite current options for maintenance treatment, there is still a high unmet need for many patients
 - \textbf{Olaparib}: limited to patients with \textit{BRCA} mutations; \approx20\% of OC patients2
 - \textbf{Bevacizumab}: limited use due to safety concerns and limited data in the growing number of patients receiving NACT
 - \textbf{Active surveillance}: many patients undergo watchful waiting following chemotherapy

- Niraparib was the first oral PARP inhibitor approved as maintenance for all patients with recurrent OC (BRCAmut and BRCAwt)
 - NOVA study demonstrated efficacy of niraparib maintenance after platinum CT in all biomarker populations: gBRCAmut: hazard ratio 0.27 (95\% CI 0.17–0.41, P<0.0001); homologous recombination deficient: hazard ratio 0.38 (95\% CI 0.24–0.59, P<0.0001) and non-gBRCAmut: hazard ratio 0.45 (95\% CI 0.34–0.61, P<0.0001)3
 - QUADRA study showed niraparib treatment benefit in patients with at least 3 prior therapies: BRCAmut 39\% ORR, homologous recombination deficient 26\% ORR, duration of response 9.4 months4

1 GLOBOCAN, 2018; 2 Moore, NEJM 2018; 3 Mirza, NEJM 2016; 4 Moore, Lancet Oncol 2019.

\textit{CI}, confidence interval; CT, chemotherapy; NACT, neoadjuvant chemotherapy; mut, mutant; OC, ovarian cancer; ORR, objective response rate; PARP, poly (ADP-ribose) polymerase; wt, wild-type.
Hypothtsis: PRIMA/ENGOT-OV26/GOG-3012 was designed to test the efficacy and safety of niraparib therapy after response to platinum-based chemotherapy in patients with newly diagnosed advanced ovarian cancer, including those at high risk of relapse (ClinicalTrials.gov: NCT02655016)

<table>
<thead>
<tr>
<th>Key Inclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• High grade serous or endometroid pathology</td>
</tr>
<tr>
<td>• Stage III: PDS with visible residual disease post surgery, NACT, or inoperable</td>
</tr>
<tr>
<td>• Stage IV: PDS regardless of residual disease, NACT, or inoperable</td>
</tr>
<tr>
<td>• CR or PR following platinum first-line treatment</td>
</tr>
<tr>
<td>• Tissue for homologous recombination testing was required at screening (Myriad myChoice®)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Patients with Stage III disease who have had complete cytoreduction (i.e., no visible residual disease) after PDS</td>
</tr>
</tbody>
</table>

CR, complete response; HRD, homologous recombination deficiency; NACT, neoadjuvant chemotherapy; OC, ovarian cancer; PDS, primary debulking surgery; PR, partial response.
PRIMA Trial Design

Patients with newly-diagnosed OC at high risk for recurrence after response to 1L platinum-based chemotherapy

2:1 Randomization

Niraparib

Placebo

Endpoint assessment

Primary Endpoint: Progression-free survival by BICR
Key Secondary Endpoint: Overall Survival
Secondary Endpoints: PFS2, TFST, PRO, Safety

Stratification Factors

- Neoadjuvant chemotherapy administered: Yes or no
- Best response to first platinum therapy: CR or PR
- Tissue homologous recombination test status: deficient or proficient/not-determined

Hierarchical PFS Testing

- Patients with homologous recombination deficient tumors, followed by the overall population.
- Statistical assumption: a hazard ratio benefit in PFS of
 - 0.5 in homologous recombination deficient patients
 - 0.65 in the overall population
- >90% statistical power and one-sided type I error of 0.025

• Body weight ≥77 kg and platelets ≥150,000/μL started with 300 mg QD
• Body weight <77 kg and/or platelets <150,000/μL started with 200 mg QD

1L, first-line; BICR, blinded independent central review; CR, complete response; OC, ovarian cancer; OS, overall survival; PFS2, progression-free survival 2; PR partial response; PRO, patient-reported outcomes; TFST, time to first subsequent therapy.
PRIMA Tissue Test for Homologous Recombination

Testing for Homologous Recombination Deficiency (HRd) and Proficiency (HRp)

- Next generation sequencing of DNA from tumor tissue (Myriad Genetics myChoice® Test)
- Provides a score based on algorithmic measurement of 3 tumor factors:
 - Loss of heterozygosity (LOH)
 - Telomeric allelic imbalance (TAI)
 - Large-scale state transitions (LST)
- Homologous recombination status is determined by the following:
 - HR-deficient tumors: Tissue test score ≥42 OR a BRCA mutation
 - HR-proficient tumors: Tissue test score <42
 - HR-not-determined

1https://myriadmychoice.com/portfolio/ovarian-cancer/mychoice-hrd-ovarian-cancer/#result
PRIMA Enrollment and Outcomes

733 randomized
- 5 did not receive intervention
 - 3 HRd

728 received intervention
- 370 HRd

484 received niraparib
- 245 HRd
 - 177 (37%) still receiving niraparib at data cutoff
 - 121 HRd

244 received placebo
- 125 HRd
 - 69 (28%) still receiving placebo at data cutoff
 - 42 HRd

307 discontinued*
- 58 due to AE
- 218 due to PD (45%)
- 12 patient request

124 HRd
- 27 due to AE
- 80 due to PD
- 8 patient request

177 (37%) still receiving niraparib at data cutoff

175 discontinued*
- 5 due to AE
- 162 due to PD (66%)
- 1 patient request

83 HRd
- 2 due to AE
- 76 due to PD
- 0 patient request

Median follow up of 13.8 months

*19 patients (8 HRd) and 7 patients (5 HRd) discontinued due to other reasons in the niraparib and placebo arms, respectively. AE, adverse event, HRd, homologous recombination deficient, PD, progression of disease.
PRIMA Patient Characteristics and Baseline Demographics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Niraparib (n=487)</th>
<th>Placebo (n=246)</th>
<th>Overall (N=733)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range), years</td>
<td>62 (32, 85)</td>
<td>62 (33,88)</td>
<td>62 (32, 88)</td>
</tr>
<tr>
<td>Weight, median, kg</td>
<td>66</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Stage at initial diagnosis, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>318 (65)</td>
<td>158 (64)</td>
<td>476 (65)</td>
</tr>
<tr>
<td>IV</td>
<td>169 (35)</td>
<td>88 (36)</td>
<td>257 (35)</td>
</tr>
<tr>
<td>Prior NACT, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>322 (66)</td>
<td>167 (68)</td>
<td>489 (67)</td>
</tr>
<tr>
<td>No</td>
<td>165 (34)</td>
<td>79 (32)</td>
<td>244 (33)</td>
</tr>
<tr>
<td>Best response to platinum-based CT, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>337 (69)</td>
<td>172 (70)</td>
<td>509 (69)</td>
</tr>
<tr>
<td>PR</td>
<td>150 (31)</td>
<td>74 (30)</td>
<td>224 (31)</td>
</tr>
<tr>
<td>Homologous recombination test status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRd</td>
<td>247 (51)</td>
<td>126 (51)</td>
<td>373 (51)</td>
</tr>
<tr>
<td>BRCAmut</td>
<td>152 (31)</td>
<td>71 (29)</td>
<td>223 (30)</td>
</tr>
<tr>
<td>BRCAwt</td>
<td>95 (20)</td>
<td>55 (22)</td>
<td>150 (20)</td>
</tr>
<tr>
<td>HRp</td>
<td>169 (35)</td>
<td>80 (33)</td>
<td>249 (34)</td>
</tr>
<tr>
<td>HRnd</td>
<td>71 (15)</td>
<td>40 (16)</td>
<td>111 (15)</td>
</tr>
</tbody>
</table>

- 35% of patients were Stage IV
- 99.6% with Stage III had residual disease post PDS
- 67% received NACT
- 31% achieved a PR to 1L CT
- 51% had HRd tumors
- 30% had BRCAmut tumors
- 34% had HRp tumors

1L, first-line; CR, complete response; CT, chemotherapy; HRd, homologous recombination deficient; HRp, homologous recombination proficient; HRnd, homologous recombination not determined; mut, mutation; NACT, neoadjuvant chemotherapy; PR, partial response; wt, wild-type.
PRIMA Primary Endpoint, PFS Benefit in the HR-deficient Population
PRIMA Primary Endpoint, PFS Benefit in the HR-deficient Population

Hazard ratio: 0.43 (95% CI, 0.31–0.59)
$p<0.001$

Niraparib Placebo

57% reduction in risk of relapse or death with niraparib

<table>
<thead>
<tr>
<th></th>
<th>Niraparib (n=247)</th>
<th>Placebo (n=126)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>21.9 (19.3–NE)</td>
<td>10.4 (8.1–12.1)</td>
</tr>
<tr>
<td>Patients without PD or death (%)</td>
<td>86%</td>
<td>68%</td>
</tr>
<tr>
<td>6 months</td>
<td>72%</td>
<td>42%</td>
</tr>
<tr>
<td>12 months</td>
<td>59%</td>
<td>35%</td>
</tr>
</tbody>
</table>

CI, confidence interval; NE, not estimable; PD, progressive disease; PFS, progression-free survival.

Sensitivity analysis of PFS by the investigator was similar to and supported the BICR analysis.
PRIMA Primary Endpoint, PFS Benefit in the Overall Population

Hazard ratio: 0.62 (95% CI, 0.50–0.76)
*p<0.001

38% reduction in risk of relapse or death with niraparib

<table>
<thead>
<tr>
<th></th>
<th>Niraparib (n=487)</th>
<th>Placebo (n=246)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median PFS</td>
<td>13.8 (11.5–14.9)</td>
<td>8.2 (7.3–8.5)</td>
</tr>
<tr>
<td>Patients without PD or death (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>73%</td>
<td>60%</td>
</tr>
<tr>
<td>12 months</td>
<td>53%</td>
<td>35%</td>
</tr>
<tr>
<td>18 months</td>
<td>42%</td>
<td>28%</td>
</tr>
</tbody>
</table>

CI, confidence interval; NE, not estimable; PD, progressive disease; PFS, progression-free survival.

Discordance in PFS event between investigator assessment vs BICR ≈12%.
PRIMA Exploratory Analysis, PFS Benefit in Pre-specified Groups

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR for PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.62 (0.50–0.76)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
</tr>
<tr>
<td><65 years</td>
<td>0.61 (0.47–0.81)</td>
</tr>
<tr>
<td>≥65 years</td>
<td>0.53 (0.38–0.74)</td>
</tr>
<tr>
<td>Stage of disease at initial diagnosis</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>0.54 (0.42–0.70)</td>
</tr>
<tr>
<td>IV</td>
<td>0.79 (0.55–1.12)</td>
</tr>
<tr>
<td>Neoadjuvant chemotherapy</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.59 (0.46–0.76)</td>
</tr>
<tr>
<td>No</td>
<td>0.66 (0.46–0.94)</td>
</tr>
<tr>
<td>Best response to platinum therapy</td>
<td></td>
</tr>
<tr>
<td>CR</td>
<td>0.60 (0.46–0.77)</td>
</tr>
<tr>
<td>PR</td>
<td>0.60 (0.43–0.85)</td>
</tr>
<tr>
<td>Homologus recombination status</td>
<td></td>
</tr>
<tr>
<td>HRd–BRCAmut</td>
<td>0.40 (0.27–0.62)</td>
</tr>
<tr>
<td>HRd–BRCAwt</td>
<td>0.50 (0.31–0.83)</td>
</tr>
<tr>
<td>HRp</td>
<td>0.68 (0.49–0.94)</td>
</tr>
<tr>
<td>HRand</td>
<td>0.85 (0.51–1.43)</td>
</tr>
</tbody>
</table>

CI, confidence interval; CR, complete response; HRd, homologous recombination deficient; HRp, homologous recombination proficient; HRand, homologous recombination not determined; mut, mutation; PFS, progression-free survival; PR, partial response; wt, wild-type.
PRIMA PFS Benefit in Biomarker Subgroups

Homologous Recombination Deficient (HRd)

- Niraparib provided similar clinical benefit in the HRd subgroups (BRCAmut and BRCAwt)
PRIMA PFS Benefit in Biomarker Subgroups

Homologous Recombination Deficient (HRd)

- Niraparib provided similar clinical benefit in the HRd subgroups (BRCAmut and BRCAwt)
- Niraparib provide clinically significant benefit in the HR-proficient subgroup with a 32% risk reduction in progression or death

Expiration: 01/17/2020
PRIMA Key Secondary Endpoint, Overall Survival (11% data maturity)

- **Pre-planned** interim analysis of overall survival numerically favors niraparib over placebo
 - Overall population 84% vs 77% alive at 2 years
 - HR-deficient 91% vs 85% alive at 2 years
 - HR-proficient 81% vs 59% alive at 2 years

CI, confidence interval; HR, homologous recombination.
PRIMA Safety Overview

- TEAEs were manageable and consistent with the PARP inhibitor class
- Dose interruptions were similar to those in the previous niraparib trials
- Treatment discontinuation due to thrombocytopenia was 4.3%
- TEAEs leading to death were determined to be not treatment-related

<table>
<thead>
<tr>
<th>Adverse Event, no. (%)</th>
<th>Niraparib (n=484)</th>
<th>Placebo (n=244)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any TEAE</td>
<td>478 (98.8)</td>
<td>224 (91.8)</td>
</tr>
<tr>
<td>Grade ≥3</td>
<td>341 (70.5)</td>
<td>46 (18.9)</td>
</tr>
<tr>
<td>Led to treatment discontinuation</td>
<td>58 (12.0)</td>
<td>6 (2.5)</td>
</tr>
<tr>
<td>Led to dose reduction</td>
<td>343 (70.9)</td>
<td>20 (8.2)</td>
</tr>
<tr>
<td>Led to dose interruption</td>
<td>385 (79.5)</td>
<td>44 (18.0)</td>
</tr>
<tr>
<td>TEAEs leading to death</td>
<td>2 (0.4)</td>
<td>1 (0.4)</td>
</tr>
</tbody>
</table>

PARP, poly(ADP-ribose) polymerase; TEAE, treatment-emergent adverse event.
No new safety signals were identified for niraparib.

- Most common TEAE was reversible myelosuppression.
- One patient was diagnosed with MDS after 9 months of niraparib treatment.

TEAEs ≥20% incidence in niraparib arm. Note: Hematologic TEAEs are not combined with laboratory results. MDS, myelodysplastic syndrome; TEAE, treatment-emergent adverse event.
PRIMA Safety and Patient-Reported Outcomes

- No new safety signals were identified for niraparib
- Most common TEAE was reversible myelosuppression
- One patient was diagnosed with MDS after 9 months of niraparib treatment

TEAEs ≥20% incidence in niraparib arm. Note: Hematologic TEAEs are not combined with laboratory results.

FOSI, FACIT ovarian cancer symptom index; MDS, myelodysplastic syndrome; TEAE, treatment-emergent adverse event.
PRIMA Conclusions

• Available therapies and active surveillance do not address the high unmet need for many patients with newly diagnosed advanced ovarian cancer after platinum-based chemotherapy

• Niraparib therapy in patients with advanced ovarian cancer provided a clinically significantly improvement in PFS after response to 1L platinum-based chemotherapy in ALL patients
 - PFS overall population: hazard ratio, 0.62; p<0.001
 - PFS homologous recombination deficient: hazard ratio, 0.43; p<0.001
 - PFS homologous recombination proficient: hazard ratio, 0.68; p=0.020

• Niraparib is the first PARP-inhibitor to demonstrate benefit in patients across biomarkers subgroups after platinum-based chemotherapy in frontline, consistent with prior clinical studies of niraparib in recurrent ovarian cancer (NOVA and QUADRA)

• Patients with ovarian cancer at the highest risk of early disease progression (NACT, partial responders to 1L platinum chemotherapy) had significant benefit with niraparib therapy

• No new safety signals were observed, and quality of life was maintained on niraparib.

• Niraparib monotherapy after first-line platinum-based chemotherapy should be considered a new standard of care
We sincerely thank patients and their families for participating in this trial.

Acknowledgements

We acknowledge the contributions of the following institutions and individuals:

ENGOT

- Belgium: J.-F. Baumard, S. Han, F. Forget, H. Denys, C. Lamot, B. Honhon, E. Jooens, C. Martinez-Mera, H. Van Den Bulk
- Russia: M. Gold, D. Bender, K. Yost, E. Gotovkin, H. Adamchuk, J. Buczem, A. Oza, S. Keck
- Ukraine: S. Yip, J. Barler, S. Lewin, V. Molseinenko, I. Bondarenko, D. Chase, J. Weberpants, G. Colon-Otero
- Canada: L. Rojas, S. Ghamande, J. Press, A. Buniakowska, S. Shevria, C. Bailey, D. Mirchandani
- US: E. Chalas, S. Chambers, D. Moore, O. Gladkov, I. Sokur, A. Cavens
- United States: L. Perry, Y. Zhuo, J. Burke, N. Musaeva, M. Neshova, T. Schmidt
- United States: L. Brown, L. Van Le, T. Schmidt

In addition, we thank the following institutions:

- Belgium: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Spain: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Germany: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- France: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Israel: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Finland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Denmark: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Sweden: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Italy: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Poland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Czechia: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Switzerland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Hungary: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Belgium: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Spain: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Germany: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- France: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Israel: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Finland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Denmark: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Sweden: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Italy: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Ireland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Poland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Czechia: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Switzerland: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Hungary: ENGOT, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG

We also acknowledge the contributions of the following institutions:

- Belgium: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Spain: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Germany: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- France: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Israel: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Finland: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Denmark: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Sweden: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Italy: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Ireland: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Poland: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Czechia: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Switzerland: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG
- Hungary: D. GOG, GEICO, AGO, GINECO, ISGO, NSGO, MITO, ICORG

We extend our gratitude to all the individuals listed for their efforts in making this trial possible.
Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer