A simple tool to evaluate the effectiveness of HIV care for settings with gaps in data availability

Amanda Mocroft, University College London, UK

17th European AIDS Conference, Basel, 8 November 2019
Presenter Disclosure Information

Amanda Mocroft

Honoraria and consultancy fees from Gilead, ViiV and A. Craig Eiland
Background

- The continuum of care (or the 90-90-90 goals) can help identify strengths or weaknesses in the ability to diagnose and link people with HIV to care and monitor treatment programs.

- Data on people on ART and with viral suppression (VS) rely on good clinical data and reporting mechanisms between national surveillance institutions and clinical cohorts that are not in place in all countries across Europe.

- Many HIV clinics do not have the IT infrastructure or resources to routinely report information on all patients in care.

Source: Raymond et al., 2014 & ECDC, 2015
Objectives

• To investigate data required to estimate the ‘right-hand side’ of the HIV continuum in a clinic setting by using different sampling techniques and random samples from participating clinics.

• To develop a simple accessible online tool to enable clinics to calculate aggregated prevalence estimates for people on ART and with VS.
Methods

- Data collected on all with HIV seen ≥1 during 2017 at 7 clinics participating in RESPOND
- The % on ART and VS (VL<200 copies/ml [<500 copies/ml in Belarus]) calculated using the total number under care in the clinic as the denominator
- Persons with missing VL assumed to be not VS

Note

Analyses focus on ‘clinic specific 2nd 90’ - % seen in clinic who are still under FU and on ART (excluding drop-outs included in UNAIDS 90-90-90).
Next unprocessed results:

- 93.8% on ART (95% CI 93.3–94.2)
- 76.7% were VS* (95% CI 75.8–77.6%)

*people without VL data were assumed to be unsuppressed
Continuum of care 2017 (at last visit)

- Under FU
- On ART
- Virologically suppressed

Percentage

Overall, Centre 1, Centre 2, Centre 3, Centre 4, Centre 5, Centre 6, Centre 7
Continuum of Care - showing missing VL

Overall
Centre 1
Centre 2
Centre 3
Centre 4
Centre 5
Centre 6
Centre 7

Percentage

Under FU On ART Missing VL Virologically suppressed
Sampling methods: Why chose a sample?

- Most clinics have limited resources and many individuals under follow-up
- Practically not realistic to input complete clinic population into online tool to get continuum (approx. 10-15 mins per individual)
- Interested in required sample size needed from clinic to reliably estimate continuum for whole of clinic population
Continuum of care 2017 (at last visit)
Sampling methods: How to choose a sample?

Possible methods:

1. Different random samples (ie 5%, born in January)

2. Bootstrapping techniques\(^1\) using 500 or 1000 repetitions to identify 2.5 and 97.5 percentiles for the percentage on ART/VS

3. Application of WHO HIV drug resistance (HIVDR) Early Warning Indicators (EWI) – sampling\(^2\)

\(^{1}\)Bootstrapping is a resampling technique used to obtain estimates of summary statistics using random sampling with replacement

\(^{2}\)WHO consolidated guidelines on person-centred HIV patient monitoring and vase surveillance annex 2.4.6
1. Different random samples in one center

Sample
1 5% random sample
2 10% random sample
3 20% random sample
4 25% random sample
5 50% random sample
6 Born first week of each month
7 Born 5,10,15,20,25,30 of month
8 Born in Jan
9 Born in Jan/June
10 Born in Jan/April/July/Oct
2. Bootstrapping

A: sample size 50; 1,000 repetitions

B: sample size 100; 1,000 repetitions

2.5 and 97.5 percentiles from bootstrapping samples
3. Random sampling

- Sample sizes calculated to achieve 95% confidence intervals of +7% for clinic specific results assuming 81% on ART are VS

<table>
<thead>
<tr>
<th>Annual number of patients in clinic</th>
<th>Number to be sampled</th>
<th>Estimated hours work (10-15 mins per patient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500-9000</td>
<td>115-120</td>
<td>20 - 30</td>
</tr>
<tr>
<td>450-1500</td>
<td>100-115</td>
<td>16.7 - 28.75</td>
</tr>
<tr>
<td>200</td>
<td>75</td>
<td>12.5 - 18.75</td>
</tr>
<tr>
<td>100</td>
<td>55</td>
<td>9.2 - 13.75</td>
</tr>
<tr>
<td>50</td>
<td>35</td>
<td>5.8 - 8.75</td>
</tr>
</tbody>
</table>

¹WHO consolidated guidelines on person-centred HIV patient monitoring and vase surveillance annex 2.4.6
Functions of the tool

1. Calculator to define required sample size
2. Importance and directions for ensuring random selection of patients
3. Patient data entry form with core data items¹
4. Outcome: user friendly aggregate data presenting % on ART and VL suppressed – in excel, pdf, ppt etc

¹At last visit: on ART, VL, gender, HIV exposure, CD4, (race)
Conclusions

• 7 clinics in RESPOND provided data for testing ‘proof of concept’ and constructing the RHS of the continuum

• Different sampling techniques investigated for impact on estimates of the clinic continuum

• We propose random sample based on statistical formula\(^1\) with sample required dependent on clinic size and precision of required estimate

• Development and validation of tool as next stage

\(^1\)WHO consolidated guidelines on person-centred HIV patient monitoring and vase surveillance annex 2.4.6
The tool will support clinics to estimate clinic specific % on ART and VS for:

- Quality control/benchmarking (self-applied auditing tool)
- Support surveillance data in countries with fragmented data on VS (reporting purposes)

If interested in taking part in the development, testing and use of the tool, please contact:
respond.rigshospitalet@regionh.dk or dorthe.raben@regionh.dk
ACKNOWLEDGEMENTS

Cohort principal investigators:
De Wit (St. Pierre, Brussels), R. Zangerle (AHICOS), M. Law (AHOD), F. Wit (ATHENA) G. Wandeler (EuroSIDA), C. Stephan (Frankfurt), N. Chkhartishvili (IDACIRC), C. Pradier (Nice HIV cohort), A. d’Arminio Monforte (ICoNA), C. Mussini (Modena), J. Casabona & J.M. Miro (PISCIS), H. Günthard (SHCS), A. Sönnerborg (Swedish InfCare), C. Smith (Royal Free HIV cohort), A. Castagna (St. Rafael, Milano), J.C. Wasmuth (Bonn, HIV Cohort) and J.J. Vehrreschild (Cologne, HIV cohort).

Cohort Coordinator, operational team members and data management:

RESPOND Executive committee:

RESPOND coordination office, date management and quality assurance:

Scientific interest group moderators:
L. Ryom, A. Mocroft (Outcomes with antiretroviral treatment), L. Peters, J. Rockstroh (Hepatitis), D. Raben and J. Kowalska (Public Health), O. Kirk, A. Philips, V. Cambiano and Jens Lundgren (PrEP)

Members of the scientific interest group:
Hepatis, Public Health, Outcomes with antiretroviral treatment, PrEP, Resistance
https://www.chip.dk/Studies/RESPOND/Scientific-Interest-Groups/Public-Health

Statisticians:
A. Mocroft and L. Greenberg

Funding:
The International Cohort Consortium of Infectious Disease (RESPOND) has received funding from Viiv Healthcare LLC and Gilead Sciences. Additional support has been provided by participating cohorts contributing data in-kind: Austrian HIV Cohort Study (AHICOS), The Australian HIV Observational Database (AHOD), CHU Saint-Pierre, University Hospital Cologne, The EuroSIDA cohort, Frankfurt HIV Cohort Study, Georgian National AIDS Health Information System (AIDS HIS), Modena HIV Cohort, San Raffaele Scientific Institute, Swiss HIV Cohort Study (SHCS), Royal Free HIV Cohort Study.